Insights into this exotic matter could someday help solve the mysteries of quantum mechanics,dark energy,and even the elusive"theory of everything."
对这种奇异物质的洞察有朝一日可能有助于解开量子力学、暗能量、甚至难以捉摸的"万物理论"的奥秘
(TMU)–Most of what we see in the world belongs to one of four states of matter:gases,liquids,solids,and plasmas.But there is a 5th state of matter,an exotic"super-atom"that has been almost impossible for scientists to observe on Earth.
我们在世界上看到的大多数东西都属于物质的四种状态之一:气体、液体、固体和等离子体。但是物质还有第五种状态,一种奇异的"超级原子",科学家在地球上几乎不可能观测到。
Researchers announced this week that while onboard the International Space Station they were able to observe this 5th state under the unique conditions of near-absolute zero temperatures and"micro-gravity."Insights into this exotic matter could someday help solve the mysteries of quantum mechanics,dark energy,and even the elusive"theory of everything."
研究人员本周宣布,在国际空间站上,他们能够在接近绝对零度的温度和"微重力"的特殊条件下观察到第五种状态。对这种奇异物质的洞察有一天可能有助于解开量子力学、暗能量、甚至难以捉摸的"万物理论"的奥秘。
The 5th state of matter,called Bose-Einstein condensates(BECs),was first discovered in lab conditions 25 years ago.This unusual"super-atom"forms when atoms of particular kinds of elements(mostly rubidium)reach temperatures near absolute zero(0 Kelvin,minus 273.15 Celsius).The reason BECs are so important is that when they reach this temperature the atoms merge into one homogenous substance that behaves like a quantum object,meaning it exists as both a particle and a wave simultaneously.
物质的第五种状态,被称为玻色-爱因斯坦凝聚(BECs),25年前首次在实验室条件下被发现。这种不同寻常的"超级原子"是在特定种类的元素(主要是铷)的原子达到接近绝对零度(零开尔文,零下273.15摄氏度)的温度时形成的。之所以如此重要,是因为当它们达到这个温度时,原子会合并成一个表现得像量子物体的同质物质,这意味着它同时以粒子和波的形式存在。
BECs thus represent a mysterious and rare liminal region between the microscopic world governed by quantum physics and the macroscopic world governed by gravity.Such a state presents an ideal experimental playground for scientists to dig into the secrets and anomalies of the quantum universe.
因此,凝聚态二氧化碳当量代表了由量子物理学支配的微观世界和由引力支配的宏观世界之间一个神秘而罕见的阈限区域。这样的状态为科学家提供了一个理想的实验场,让他们挖掘量子宇宙的秘密和异常。
However,it is virtually impossible for researchers to observe BECs on Earth because the force of gravity destabilizes the magnetic fields which act as a trellis holding the volatile"super-atom"together.Earth-bound scientists are left with only hundredths of a second before a BEC falls apart.
然而,研究人员实际上不可能在地球上观察到碳当量凝聚态,因为重力使磁场不稳定,而磁场就像一个格子,将挥发性的"超级原子"聚集在一起。在 BEC 分崩离析之前,地球上的科学家们只有百分之一秒的时间。
Researchers aboard the ISS discovered that in the microgravity of orbital space,they could observe BECs in the specially developed Cold Atom Lab for a full second or longer.
国际空间站上的研究人员发现,在轨道空间的微重力条件下,他们可以在专门开发的冷原子实验室中观测整整一秒或更长时间的凝聚态碳酸锂。
"Microgravity allows us to confine atoms with much weaker forces,since we don't have to support them against gravity,"said Robert Thompson of from the California Institute for Technology,Pasadena.
帕萨迪纳加州理工学院的罗伯特·汤普森说:"微重力使我们能够限制作用力小得多的原子,因为我们不需要支持它们对抗重力。"。
Microgravity also allowed them to use weaker magnetic fields and colder temperatures,which facilitated the condensates demonstrating more exotic quantum effects.
微重力还允许他们使用更弱的磁场和更低的温度,这有利于凝聚体展示更多奇异的量子效应。
The observation of the fifth form of matter is considered a groundbreaking achievement that has huge potential ramifications for the study of quantum mechanics and dark energy.Scientists believe that by finally understanding these two fields,they may be able to unite the classical physics of gravity with quantum physics into a"theory of everything."
对物质第五种形态的观测被认为是一项开创性的成就,对量子力学和暗能量的研究具有巨大的潜在影响。科学家们相信,通过最终理解这两个领域,他们或许能够将引力经典物理学和量子物理学结合成一个"万物理论"
"In the past,our major insights into the inner workings of nature have come from particle accelerators and astronomical observatories;in the future,I believe precision measurements using cold atoms will play an increasingly important role,"Thompson said.
在过去,我们对自然内部运作的主要洞察来自粒子加速器和天文台;在未来,我相信使用冷原子的精确测量将发挥越来越重要的作用。
In future experiments,researchers hope to try potassium atoms so they can see the result of two BECs merging.
在未来的实验中,研究人员希望尝试钾原子,这样他们就可以看到两个凝聚态碳酸钙合并的结果。
The scientists published their ISS research in the June 11 issue of the journal Nature.
科学家们在6月11日的《自然》杂志上发表了他们对 ISS 的研究。
来源: