熟视无睹的农田污染与农药危害

2017年6月24日15:55:57环境健康熟视无睹的农田污染与农药危害已关闭评论1.8K1阅读模式

 

人民食物主权论坛

食物主权按

 

我们普通人对于农药的感情是复杂和矛盾的。一方面,我们享受着农药施用带来的廉价食物,一方面,我们又承受着农药残留对我们的身体和环境带来的种种毒害。80年代以来,大量施用农药带来的好处越来越为积累已久的危害所抵消:害虫杂草产生抗性,农药被迫越施越多,土壤质量下降影响作物生长,土壤和水体的生物受影响,甚至影响人类生殖健康。 

那么要如何解决问题呢?文章除了给出一些技术上的土壤修复措施之外,更指出:在用药上,一方面农民急需引导和培训,另一方面,农业呼唤更生态的防治措施和种养方式。对此,农民生产必须重新以生态的方式组织起来。然而,与作为受害者的消费者一样,农民也是市场经济中备受挤压的一方,要改变农民滥用药的困境,必须重建更公平无剥削的食物生产消费体系。

熟视无睹的农田污染与农药危害

正文

熟视无睹的农田污染与农药危害

农药主要包括杀菌剂、杀虫剂和除草剂三大类。农药作为农业生产中必不可少的生产资料,对农业发展和人类粮食供给做出了巨大的贡献。世界范围内农药所避免和挽回的农业病、虫、草害损失占粮食产量的1/3。然而近年来随着农药长期大量的施用,农药残留及污染问题日益严重,已成为农业面源污染的重要来源之一。 

据统计,农田中施用的农药量仅有30%左右附着在农作物上,其余70%左右扩散到土壤和大气中,导致土壤中农药残留量及衍生物含量增加,造成农田土壤污染。这不仅会破坏土壤中的生物多样性,还会通过饮用水或土壤-植物系统经食物链进入人体,危害人体健康。

 

一、农田农药的污染现状

据统计,目前世界上生产和使用的农药有几千种,世界农药的施用量每年以10%左右的速度递增。60年代末,世界农药年产量在400万吨左右,90年代则超过3000万吨。

 

熟视无睹的农田污染与农药危害

 

我国是一个农业大国,农药使用量居世界第一,每年达50~60万吨,其中 80%-90% 最终将进入土壤环境,造成约有87-107万公顷的农田土壤受到农药污染。我国农药使用量较大的地区有上海、浙江、山东、江苏和广东,其中以上海和浙江用药量最高,分别达到了10.8公斤/公顷(kg/hm2)和10.41kg/hm2。以小麦为主要农作物的北方干旱地区施药量小于南方水稻产区;蔬菜、水果的用药量明显高于其他农作物。目前,农药污染已成为我国影响范围最大的一类有机污染,且具有持续性和农产品富集性。随着使用量和使用年数的增加,农药残留逐渐增加,呈现点-线-面的立体式空间污染态势。

 

1.迅猛发展的除草剂:

水体、土壤广泛残留

近年来,除草剂的增长率远高于杀虫剂和杀菌剂,约占到农药产量比重的1/3。目前全国农田化学除草面积较1980年增加了十多倍,据估算除草剂将以每年200万公顷的速度增加,每年需除草剂6.7-8.6万吨,占农药需求总量的30%-40%左右,未来十年全国化学除草面积可能会增加0.31亿公顷。 

随着除草剂的大量施用,造成的环境影响也日益突显。研究表明,在南非、瑞士、西班牙、法国、芬兰、德国、美国和中国等莠去津使用历史较长的国家,地表水和地下水均受到了不同程度的污染。莠去津是我国玉米田主要施用的除草剂,2000年我国莠去津的使用量为2 835吨,仅辽宁省使用量就超过1600吨。由于莠去津水溶性较强,农田中的大量施用使它成为各国河流、小溪等水体中检出率最高的除草剂。我国淮河信阳、阜阳、淮南、蚌埠4个监测断面检测到莠去津的残留量分别为76.4、80.0、72.5、81.3微克/升(μg/L)。在高使用量的条件下,土壤中草甘膦的浓度可能达2毫克/公斤(mg/kg);若考虑土壤对草甘膦的吸附,土壤表层中实际的浓度要比这个数值高得多。

 

2.多种杀虫剂在土壤、

空气持久高浓度残余

现阶段杀虫剂包括新烟碱类、拟除虫菊酯类、有机磷类、氨基甲酸酯类、天然类、其他结构类等六大主类。

 
 

熟视无睹的农田污染与农药危害

 

在全球农药市场中,2011年杀虫剂约占了28%的市场份额,销售额达到了140亿美元;2014年在农药市场的销售份额占比29.5%,销售额为186.19亿美元。杀虫剂最大的应用作物为果蔬,其他应用较多的有大豆、水稻、棉花等。 

从2014 年全球销售情况来看,有机磷类杀虫剂市场销售额占杀虫剂市场的15.3%,在杀虫剂所有类别中排名第四。目前统计用于农业的有机磷类杀虫剂品种有46个,其中销售额排在前7名的依次是毒死蜱、乙酰甲胺磷、乐果、丙溴磷、敌敌畏、喹硫磷和马拉硫磷。 

拟除虫菊酯类杀虫剂市场销售额占杀虫剂市场的17.0%,在杀虫剂类别中排名第三,其中销售额和年增长率排在前5位的依次是高效氯氟氰菊酯、溴氰菊酯、氯氰菊酯、联苯菊酯和氯菊酯。 

氨基甲酸酯类杀虫剂市场销售额占杀虫剂市场的6.7%,在杀虫剂类别中排名第六。目前统计用于农业的氨基甲酸酯类杀虫剂有17个,其中使用较多品种有4个,依次为灭多威、克百威、杀螟丹和丁硫克百威。在中国,除杀螟丹外,其他3个均被限制使用。 

新烟碱类杀虫剂市场销售额占杀虫剂市场的18%,在杀虫剂类别中排名第二。目前统计用于农业的新烟碱类杀虫剂有7个,分别为噻虫嗪、吡虫啉、噻虫胺、啶虫脒、噻虫啉、呋虫胺和烯啶虫胺。近年来,该类型产品中多个品种受到管制,尤其是2013年底起,噻虫嗪、吡虫啉和噻虫胺等在欧盟的使用受到限制。(编注:研究证实,新烟碱类农药对蜜蜂危害很大) 

天然类杀虫剂主要包括植物源、动物源和微生物源物质及其代谢物。2014 年销售额排前 4名的天然类杀虫剂依次为阿维菌素、多杀霉素、乙基多杀菌素、甲氨基阿维菌素苯甲酸盐;销售额较大的微生物杀虫剂主要有苏云金杆菌、坚强芽孢杆菌、蜡蚧轮枝菌等;销售额较大的植物提取物杀虫剂有印楝素等。 

有机氯类杀虫剂市场销售额仅占杀虫剂市场的0.7%,目前市场上有机氯类杀虫剂主要有硫丹、三氯杀螨醇和林丹。有机氯类杀虫剂虽然在发展中国家保持了一定的销售额,但在发达国家的销售额一直在下降。 

此外,2014年销售额较高的其他类杀虫剂有氟虫腈、氯虫苯甲酰胺、氟苯虫酰胺、螺虫乙酯、茚虫威、吡蚜酮、虫螨腈、氟啶虫胺腈、氰氟虫腙、乙虫腈和氟啶虫酰胺。 

多年施用农用杀虫剂对环境造成了不可避免的污染。2004年,我国对5个省市表层土壤中有机氯农药(OCPs)污染状况调研结果表明,滴滴涕(DDTs)仍是土壤中OCPs 污染的主要组成,约占总量的90%左右,平均浓度从高到低依次为江苏省>湖南省>湖北省>北京市>安徽省。根据我国《土壤环境质量标准》(GB 15618—1995)的规定,六六六(HCHs)和DDTs在一级土壤中的质量分数标准限值为50μg/kg,我国大部分地区土壤中OCPs污染水平集中在中低浓度水平,但部分地区 OCPs 的浓度分布差异较大,存在OCPs 污染严重超标的现象,如广州、成都、呼和浩特等城市。 

作为一种危害性极高的OCPs,硫丹曾广泛用于棉花、烟草、茶叶和咖啡等农业生产,导致在许多国家和地区的土壤、大气、雨水、地下水等样品中检测到其残留。近年来,我国在多个省份及流域的各种环境介质中检出硫丹。对我国的37个城市及3个背景点的空气监测发现,α-硫丹和 β-硫丹的浓度范围分别为0-1190 皮克/平方米(pg/m3)和0-422pg/m3,(编注:皮克等于1/ 克)同时发现,含量较高采样点出现在棉花种植区,表明农业使用是我国空气中硫丹的重要来源。水环境中同样有硫丹的存在,我国太湖中也检测出硫丹,浓度为0.32 pg/L。 

有机磷、氨基甲酸酯、拟除虫菊酯类农药应用非常广泛,这些非持久农药与土壤都有较强的结合能力。有机磷杀虫剂在土壤中的结合残留量高达26%-80%,氨基甲酸酯类农药西维因的结合残留量达 49%,拟除虫菊酯类农药的结合残留量达36%-54%。有机磷农药在蔬菜、粮食和一些畜产品中的残留引起的农药中毒事件,引起人们的高度重视。据报道,1998 年1-10月全国蔬菜农药中毒人数达94165人,死亡9107 人,因农药残留量检验不合格的出口农产品被退货金额达74亿美元。

 

3.被忽视的杀菌剂危害:

超量使用普遍

农药杀菌剂是防治作物病害最重要的武器,杀菌剂近年来一直成为研发的热点。据统计,2012—2014年全球杀菌剂销售额分别占农药总销售额的26.3%、25.8% 和 25.9%。我国杀菌剂的需求量从2000 年的5.98万吨到2012年的7.94万吨,增加了32.7%,2013年我国的杀菌剂用量同比增加4.68%。苯醚甲环唑等三唑类杀菌剂需求量增幅较大,从2000年的1.9万吨(制剂量)到2012年的3.04 万吨(制剂量),增加了59.7%。

 
 

近年来世界杀菌剂新品种的开发取得很大进展,如三唑类、酰胺类、嘧啶胺类、甲氧基丙烯酸酯类杀菌剂等。从农药市场需求量来讲,全球杀菌剂增长速度达到近8%,三唑类杀菌剂仍将是主角;甲氧基丙烯酸酯类杀菌剂因其现阶段无可替代的作用效果将逐渐占据杀菌剂的主角地位。 

杀菌剂主要用于水果、蔬菜、中草药等的病害防治。由于大部分杀菌剂为较低效或低效农药,在施用后一段时间内才可以看到明显的防治效果,因此使用过程中用量常被刻意提高数倍甚至数十倍, 杀菌剂就成了蔬菜生产的重要污染源之一。欧盟早在1996年就指出异菌脲、腐霉利、百菌清、苯菌灵、代森类等几种杀菌剂是作物生产中主要的危害残留物。法国国家环境所2003年的一份调查报告显示,法国90%的河流及58%的地下水中含有杀菌剂、除草剂及杀虫剂等农药。由于我国农药监管的重点是高毒高残留的杀虫剂,而对杀菌剂的监管重视不够,因此杀菌剂的用量一般会比登记用量大几倍甚至十几倍,特别是多菌灵、福美双、代森锰锌等在我国已经有很长的使用历史。在我国生产的水果、蔬菜中,多菌灵和百菌清的检出率均较高,某些地方还会超标。

 

二、农田土壤农药残留的风险分析

 

1.害虫和杂草产生抗性

由于农药的长期使用,其防治对象害虫和杂草会对农药产生抗性,而害虫的天敌却遭受农药毁灭性的打击。据统计报道,截至2009年全世界189种杂草对1种或数种除草剂产生抗性,其中双子叶杂草113种,单子叶杂草76种。 

据不完全统计,在全世界已有540种昆虫和螨对310种化合物产生抗药性,在我国已发现产生抗性的昆虫和螨类达45种,如吡虫啉这类害虫产生抗性风险较高的品种, 因害虫抗性迅速上升, 防效快速下降而将会被其他产品取代。 

在连续多年使用同一种(类)除草剂后,大量对除草剂敏感的群体被杀死而减少,而一些不敏感或已产生抗性的群体得以繁衍,致使农田杂草种群迅速更迭,群落结构发生改变,演替加速,次要杂草上升为优势种群并滋生为害,增加了防除的难度。早期应用的除草剂品种从开始应用到杂草产生抗性约需10 年以上,而最近则仅用4-5年便产生抗性。 

抗性的形成会使农药的使用量增加,在中国东北地区,一些旱田除草剂每公顷用量成倍增长,如莠去津由开始的1.5g已增至目前的3g,乙草胺由1g增至2g,稻田苄嘧磺隆由30g增至50g。从而使农药对环境的污染更为严重,形成恶性循环。杂草抗药性问题的严峻形势已引起了全世界的高度重视,除草剂抗药性的严重程度有可能超过杀虫剂和杀菌剂。

 

2.土壤质量下降,影响作物生长和质量

一方面被农药长期污染的土壤将会出现明显的酸化,土壤养分(磷P2O5、全氮、全钾)随污染程度的加重而流失,土壤孔隙度变小等,造成土壤结构板结,从而影响作物的生长。另一方面残存于土壤中的农药对生长的作物有不利的影响,尤其是除草剂。不同的作物对除草剂的敏感程度不一样,若把除草剂用在敏感作物上,或气传漂移在其上面,就会产生药害,甚至死亡。田间喷洒除草剂后,有效地控制了当季农田杂草,但对下茬敏感作物却容易造成药害。在除草剂使用过程中与杀虫剂、杀菌剂以及其他农药混用不当,容易对农作物造成药害。一些长期使用长残效除草剂的田块还出现了除草剂残留量累积的现象,严重影响了后茬作物的轮作,形成了"癌症田"的现象。除草剂如咪唑啉酮、三唑嘧啶磺酰胺、三氮苯甚至用于小麦田的敌稗也会伤害后茬作物。

 

熟视无睹的农田污染与农药危害

长期施用农药的农田的土壤

 

3.农药对土壤酶的影响

农药对土壤酶活性的影响既有正面效应也有负面效应,这主要取决于农药本身和环境因子。一般情况下低浓度农药对土壤酶表现刺激效应,高浓度则表现出抑制效应,且抑制作用随浓度的增加而增强。

 

4.影响土壤微生物的多样性

农药污染对微生物群落结构和多样性往往产生不利的影响,这种影响与农药种类和浓度关系密切,而微生物对农药的抗性也是一个值得关注的问题。农药浓度与其毒性效应直接相关,低浓度的除草剂苄嘧磺隆对水稻土中微生物有轻微、短暂的不利影响,而高浓度处理下,细菌群落数量急剧下降,该水稻土中微生物群落的多样性与苄嘧磺隆的浓度显著相关。低浓度(<60mg/kg)甲氰菊酯杀虫剂对蔬菜土壤中微生物数量影响不大,高浓度(>90mg/kg)的甲氰菊酯在短期内就能对微生物有抑制作用。

 

5.农药对土壤动物的影响

一般情况,有机磷杀虫剂对土壤动物的影响比除草剂、杀菌剂等更显著。有机磷杀虫剂对土壤动物的作用速度快、毒性强,是一类急性农药,而除草剂、杀菌剂对土壤动物是慢性的,毒性也较弱。蔡道基等研究[1]发现,蚯蚓对甲基对硫磷与克百威的毒性反应快,用土壤法处理30min后皮肤发红充血,遇光或受机械触动刺激,急剧卷曲、扭动,失去逃避能力。受害严重的蚯蚓1周死亡,死亡前颜色变淡,环节松驰、脱节,甚至溃烂。Bouwman 等研究[2]也表明,当赤子爱胜蚓暴露在2mg/kg 呋喃丹污染的土壤中,蚯蚓个体不能发育出环带和产卵。

 

6.进入水体的农药对水生生物的毒害

土壤中残留的农药通常随地表径流进入河流、湖泊,对地下水和地表水造成污染。同时,进入水体的农药也会对水生生物造成一定的毒害作用。莠去津能在水生生物体内产生富集,对水体中的低等动物毒性极大,研究表明[3]对淡水中的软体动物如水蚤、水蛭的取食、生长、产卵产生抑制作用。它在鱼体内富集的浓度可以达到周围水环境浓度的11倍。暴露在0.5μg/L莠去津的水环境中的金鱼发生明显的行为变化。莠去津对水生动物和两栖动物产生某些生殖毒性。Dodson等人的研究发现[4],水蚤Daphnia在胚胎形成期,低浓度0.5~10μg/L 莠去津的暴露就可使它的雌性后代出生率增加。将蝌蚪放在含有不同浓度莠去津的水中饲养,0.1μg/L 的莠去津水溶液就能导致青蛙产生雌雄同体现象。草甘膦对鲫鱼具有一定的毒性,但不具有剂量效应,与染毒时间的长短也无明显相关性。[5]溴苯腈能导致啮齿类动物的生殖障碍,一旦进入水体,会产生很强的毒性,对鱼类的生存构成威胁。几乎所有水生生物对硫丹都非常敏感。研究表明,硫丹对藻类具有较高毒性[6];无底泥条件下硫丹对甲壳动物的毒性比存在底泥时要高数倍到数十倍;硫丹对鱼类同样具有较强毒性,淡水鱼类相对海水鱼类具有更高的耐受性,高等鱼类较低等鱼类对硫丹的耐受能力更强一些。另外,硫丹与其他污染物的联合毒性效应更强。

 

7.食物中农药残留严重,

影响人类生殖健康

由于农药使用者缺乏农药知识和用药技术,长期大量不合理地使用农药,造成蔬菜、水果、畜禽养殖产品等农药残留量过高,而这些农产品会对人体健康造成急慢性中毒危害。例如,莠去津和 2,4-D已被美国环保局列为致癌物。农药和重金属是蔬菜、茶叶及粮食作物的主要污染物。其中,叶菜类易受农药污染。蔬菜中超标的农药品种主要为菊酯类、有机磷类和氨基甲酸酯类农药,如氰戊菊酯、联苯菊酯、氯氟氰菊酯、三唑磷、水胺硫磷、对硫磷、苯醚甲环唑、克百威、敌敌畏、毒死蜱、氟虫腈、乐果等。受农药污染的主要粮食品种是水稻,农药品种主要为敌敌畏、氧化乐果、甲胺磷等有机磷农药。

 

熟视无睹的农田污染与农药危害

 

国家质量监督检验检疫总局公布的2001年第三季抽查结果显示,23个大中城市的大型蔬菜批发市场,47.5%蔬菜农药残留量超标。 2012年,叶雪珠等[7]对浙江省蔬菜生产中的农药使用情况和4种农药残留进行了分析,发现目前蔬菜生产中主要使用 78 种农药,包括杀虫剂、杀菌剂、生长调节剂和除草剂,以低毒农药品种为主;蔬菜中主要残留 28 种农药,检出频率较高的农药依次为啶虫脒、多菌灵、毒死蜱、吡虫啉、烯酰吗啉、三唑磷、霜霉威和哒螨灵等,检出的残留农药品种中,有46.4% 在调查中未发现有使用,甲胺磷等高毒农药仍有检出,说明蔬菜食用仍存在农药残留安全风险。 

此外,研究表明很多农药都具有内分泌干扰物(EDs)的特性。EDs对个体的生殖、发育以及行为产生多方面的影响,表现出拟天然激素或抗天然激素的作用。在已报道125种EDs中,农药就有86种,占68.8%。我国当前几种主要除草剂中乙草胺、莠去津、甲草胺、草克净、杀草强等均是EDs。近20年来出现的拟除虫菊酯类,被农业和家庭广泛用作杀虫剂,现已证实它能刺激乳腺癌MCF7 细胞增殖和 p52 基因表达。世界各国广泛使用残效期很长的有机氯杀虫剂,包括DDT、氯丹、狄氏剂、毒杀芬和六氯苯等物质是EDs。虽然已禁止在中国使用,土壤中的残留也在逐步降低,但是由于EDs具有低剂量效应,一些用量并不多的农药也可能因为低剂量效应,危害具有相加作用而应给予重视。此外,农药乳化剂,如烷基酚类,包括壬基酚、辛基酚等或者杀虫剂载体,如邻苯二甲酸酯类,不仅污染广泛,而且其雌激素活性也很高。具有EDs特性的农药不仅具有致癌作用,而且有可能导致男性基本丧失生育能力,使人类在一代人的时间里灭绝。

 

三、如何修复被农药污染农田的土壤

目前用于修复农药污染土壤的修复技术主要有物理修复、化学修复和生物修复等。其中,物理修复和化学修复技术具有周期短、修复效率高,但工程量大、费用高、易产生二次污染等特点,更为适用于农药残留浓度较高的土壤修复,如农药场地污染修复。生物修复法虽然修复周期较长,但因其经济环保,且不易破坏生态系统等优点,更加适合中低残留浓度的农药污染土壤,如农田土壤中的农药污染修复。针对农田土壤中各类农药的生物修复主要包括微生物修复、植物修复、菌根修复等。

 

1.微生物修复

大量的研究表明,农药的微生物降解是能够彻底消除农药土壤污染的主要途径。微生物降解农药的作用方式可以分为两大类,一是微生物直接作用于农药,通过酶促反应降解农药,常说的微生物降解有机磷农药多属于此类;二是通过微生物的活动改变了化学和物理的环境而间接作用于农药,一般有矿化作用、共代谢作用、生物浓缩或累积作用及其他的间接作用等。

 

2.植物修复

利用植物能忍耐和超量积累环境中污染物的能力,通过植物的生长来清除环境中的污染物,是一种经济、有效、非破坏型的污染土壤修复方式。 

植物对土壤中农药的修复主要包括有3种机制:a、许多植物可以直接从土壤中吸收农药等污染物进入植物体内,通过木质化作用或在植物生长代谢活动中发生不同程度的转化或降解;b、植物释放到根际土壤中的酶可直接降解有关化合物,其中农药类有机污染物的降解起着重要作用的植物酶是水解酶类和氧化还原酶类等降解酶,这些酶通过氧化、还原、脱氢等方式将农药分解成结构简单的无毒小分子化合物;c、植物根际与微生物的联合代谢作用,根分泌物和分解物给微生物提供营养物质,而微生物活动也促进了根系分泌物的释放,两者互惠互利,共同加速根际区农药的降解。

 

3.菌根修复

菌根是土壤真菌菌丝与植物根系形成的共生体。据报道,外生菌丝一方面增加了根与土壤的接触,能增强植物的吸收能力,改善植物的生长,提高植株的抗逆能力和耐受能力;另一方面菌根化植物能为真菌提供养分,维持真菌代谢活性,并且菌根有着独特的酶途径,用以降解不能被细菌单独转化的有机物。

 

四、农药污染农田的综合治理对策

1、加强农田土壤农药残留的调查研究

加强土壤农药污染的监测,了解土壤农药污染的情况,是防治土壤农药污染的必要措施之一。然而我国有关不同区域、不同土壤利用方式下农田土壤农药污染残留累积情况的报道还很不足,对农产品中农药残留情况也缺乏常规化的监测数据。针对不同类型的农药在环境中的半衰期、毒性效应以及环境行为差异较大的特点,有必要加强农田土壤的农药残留情况及不良后果的调查研究,为制定合理恰当的防治措施提供依据。

 

2.加大危害较大农药的

替代技术研发力度

有些农药在中国使用较多,暂时还没有技术上和经济上都可行的替代品,短期内难以完全淘汰,对于此类农药应该加大力度进行替代技术的研究。对于那些危害较小、替代困难的农药,要加强管理,做到合理使用以减小用量,使危害最小化。还可实施有害生物综合治理技术(IPM)和农田杂草综合治理技术,从而实现少用农药。同时,要通过现代生物技术,研发低毒高效农药,积极开展生物防治技术的研究。近些年来,无毒或低毒无污染的生物农药研究得到了广泛重视,已研究了80种不同的浸染生物种,防除约70种杂草。生物杀虫剂在我国加快发展,苏云金杆菌、阿维菌素和病毒杀虫剂等已开始在一些主要作物上得到广泛应用,今后应该进一步加大生物农药的研制和推广。

 

3.调整农艺措施,

增强土壤的自净能力

农药在土壤中可通过微生物分解、水解、光化学分解等作用而降解,因此可通过各种农业措施,调节土壤结构、黏粒含量、有机质含量、土壤酸碱性、微生物种类数量等增强土壤对农药的降解能力。此外,通过翻土使除草剂、DDT以及某些有机磷农药暴露在太阳光下,以促进其光化学降解。

 

4.引导农民合理用药和

安全施药技术,提高环保意识

造成我国农田土壤农药污染的最主要原因之一就是农药使用技术落后。对农药的具体施用方法、施用时间、所用器械以至于废药的处理、容器清洗等诸多方面进行严格规定和规范操作,以确保土壤环境及作物生长安全性最高,而完善的培训制度是规范执行的必要保障。因此有必要加强农业技术推广网络和其他信息媒体的建设,及时发布农情、病虫害监测动态信息,通过广开宣传渠道,利用广播、影视、录像和印发或免费赠送防治手册、科普读物,举办不同层次不同形式的各种植保短训班、防病虫战役前的集训班等,全面向农民宣传讲授科学种田、科学施药的使用新知识与技术,提高农民的环保意识。

 

熟视无睹的农田污染与农药危害

农村市集的农药小贩

 

5.完善法律法规,

建立与国际接轨的质量标准体系

针对当前农药生产和使用过程中的问题,首先要建立健全现行的农药管理法规体系,要加紧制订和出台农药污染防治和农药环境安全监督管理方面的条例。在有法可依的基础上,强化检测与执法工作,为消除农药危害创造条件。其次是借鉴别国的成功经验,建立起一个既符合我国国情,又与国际接轨的农药质量标准体系和检测检验体系,对现有生产企业的产品实施质量认证制度和市场准入制度,加强流通领域管理,促进农药市场的良性发展。

 

注释

 

[1] 蔡道基, 张壬午, 李治祥, 等. 农药对蚯蚓的毒性与危害性评估[J]. 农村生态环境, 1986, 2(2):14–18

 

[2] Bouwman H, Reinecke A J. Effects of carbofuran on the earthworm, Eiseniafetida using a defined medium[J]. Bulletin of Environmental Contamination and Toxicology, 1987, 38(2): 171 –178

 

[3] Streit B, Peter H M. Long-term effects of atrazine to selected freshwater invertebrates[J]. ArchivHydrobiol, 1978, 55: 62–77

 

[4] Donson S L, Merritt C M, Shannahan J P. Low exposure concentrationsof atrazine increase male production in Daphnia [J]. Environmental Toxicology and Chemistry, 1999, 18(7): 1568–1573

 

[5] 南旭阳. 除草剂"草甘膦"对鲫鱼外周血红细胞微核及核异常的影响[J]. 安徽师范大学学报(自然科学版), 2001, 24(4): 329–331

 

[6] De Lorenzo M E, Taylor L A, Lund S A, et al. Toxicity and bio concentration potential of the agricultural pesticide endosulfanin phytoplankton and zooplankton[J].  Archives of Environmental Contamination and Toxicology, 2002, 42(2): 173–181

 

[7] 叶雪珠, 赵申燕, 王强, 等. 蔬菜农药残留现状及其潜在风险分析[J]. 中国蔬菜, 2012(14): 76–80

zhunbeizhuanbian
  • 本文由 发表于 2017年6月24日15:55:57
  • 除非特殊声明,本站文章均来自网络,转载请务必保留本文链接