简介:
The eye is the primary tissue surface that humans use to interface with light.The world that we perceive through our eyes creates our reality through both visual and non-visual effects.
眼睛是人类用来与光接触的主要组织表面。我们通过眼睛感知的世界通过视觉和非视觉效果创造了我们的现实。
Although humans viscerally experience the camera activity of our eyes,a less obvious but vital function of our visual apparatus is the clock mechanism.Humans synergistically use our eyes(which are considered neurological tissue)and brains to tell time with light frequencies and synchronize myriad metabolic and endocrine functions,the symphony of which are known as our circadian rhythm.The anatomical structure of our eyes uses specific frequencies of light to stimulate regions of the brain that control the timely rhythm of our biological processes.The eye is both a camera and a clock,both critical functions,though the latter has been almost entirely overlooked and appears to have an even more foundational effect on all systemic biological processes.
尽管人类从内心深处感受到我们眼睛的摄像机活动,但我们的视觉器官的一个不那么明显但至关重要的功能是时钟机制。人类协同地使用我们的眼睛(被认为是神经组织)和大脑以光的频率来报时,并同步无数的新陈代谢和内分泌功能,其交响乐被称为我们的昼夜节律。我们眼睛的解剖结构使用特定频率的光刺激大脑中控制我们生物过程及时节奏的区域。眼睛既是照相机又是时钟,两者都是关键功能,尽管后者几乎被完全忽视了,而且似乎对所有系统的生物过程有着更基本的影响。
The Architecture of the Eye:A Photon Trap
眼睛的结构:一个光子陷阱
Ophthalmologists have been aware of the structural features of the eye that create vision for decades.A combination of the optical and neural components of the eyeball allows for phototransduction,the process by which light stimuli is converted to brain signals by the retinal cells.However,what is less well known are the circadian mechanisms of the optical tissue.A family of photoreceptors called"opsins"are non-visual light detectors that entrain the circadian rhythm without a visual component.Neuropsin,melanopsin,and rhodopsin are examples of photopigments in the eye(and on other tissue surfaces)that are incorporated to detect specific light frequencies and help the brain tell time.The aromatic amino acids that make up these structures are designed at a molecular level to trap photons and create circadian signaling substances such as dopamine and melatonin.Additionally,hemoglobin,which shares an atomic structure with chlorophyll(the famous photoreceptor in plants),is constantly circulating within the vasculature of the eye and assimilating light energy.When exposed to solar radiation,these building blocks of the eye work together to process light stimuli and orchestrate a coherent biological response.
眼科医生已经意识到眼睛的结构特征,创造视力几十年。眼球的光学和神经成分的结合允许光转换,光刺激通过视网膜细胞转换成大脑信号的过程。然而,我们对光学组织的昼夜节律机制知之甚少。一种叫做"视蛋白"的光感受器家族是一种非视觉光探测器,它在没有视觉元素的情况下纠缠昼夜节律。神经蛋白酶、黑视蛋白和视紫红质是眼睛(和其他组织表面)的感光色素的例子,这些感光色素结合在一起可以检测特定的光频率,帮助大脑判断时间。构成这些结构的芳香族氨基酸是在分子水平上设计来捕获光子并产生昼夜信号物质,如多巴胺和褪黑激素。此外,血红蛋白与叶绿素(植物中著名的光感受器)具有相同的原子结构,它不断地在眼睛的血管中循环并吸收光能。当暴露在太阳辐射下时,眼睛的这些组成部分共同工作,处理光刺激并协调一致的生物反应。
The Eyes&The Brain:A Quantum Computer
眼睛与大脑:量子计算机
The suprachiasmatic nucleus(SCN)in the hypothalamus of the human brain is the primary circadian oscillator.Light or darkness signals obtained by the photoreceptors in the eye travel along the central retinal pathway to distal parts of the brain including the pituitary,hypothalamic,and pineal glands.These glands work to establish hormonal and metabolic homeostasis and,as shown by the researcher Fritz Hollwich,are optimized by unobstructed optical exposure to solar frequencies.In fact,the volume of certain brain regions can be positively or negatively affected depending on light exposure.A balance of blue and red wavelength light through the eye in the morning stimulates the release of pituitary hormones,while the presence of UVA light afterward turns them off.When the eyes and brain are working in concert to regulate hormonal secretions,regeneration pathways,and metabolism,the circadian rhythm is optimized.
人类大脑下丘脑中的视交叉上核是主要的昼夜节律振荡器。眼睛中的光感受器获得的光或暗信号沿着视网膜中央通路传输到大脑的远端部分,包括垂体、下丘脑和松果腺。正如研究人员弗里茨·霍尔维奇所展示的那样,这些腺体建立荷尔蒙和代谢的内环境,并通过对太阳光频率的无阻碍的光学照射来优化。事实上,大脑某些区域的体积可能受到正面或负面的影响,这取决于光照。早晨通过眼睛的蓝色和红色波长的平衡刺激脑垂体激素的释放,然后 UVA 光的存在使它们关闭。当眼睛和大脑协同工作调节激素分泌、再生通路和新陈代谢时,昼夜节律就得到了最优化。
Invisible Wavelengths that Turn the Gears of the Eye Clock
使眼睛时钟齿轮转动的不可见波长
The Zeno effect of quantum physics states that what you can observe changes your reality.
量子物理学的芝诺效应表明,你所能观察到的改变了你的现实。
For humans,this means that the frequencies of light that we can observe in our conscious awareness shape our reality.For this reason specifically,the key signaling frequencies for human biochemistry are in the ultraviolet and infrared ranges,above and below our visual perception.If these frequencies were available to the eye camera they wouldn't be of use to the eye clock.These are the specific frequencies that modern artificial light is deficient in,making it all the more important to prioritize sunlight.
对于人类来说,这意味着我们可以在意识意识中观察到的光的频率塑造了我们的现实。特别是因为这个原因,人体生物化学的关键信号频率在紫外线和红外线范围内,在我们视知觉的上面和下面。如果这些频率可用于眼部照相机,它们就不会对眼睛时钟有用。这些是现代人造光所缺乏的特定频率,因此优先考虑阳光就显得更加重要。
Doctors in the United States are still taught that the anterior chamber,the lens,and the cornea block UV light.In reality,the virtuous collagen and retinal pigment epithelium are UV fluorophore proteins that are designed to receive these frequencies.About 1%of UVB gets through the eye and 3%of UVA.Additionally,neuropsin in the cornea and the skin is specifically a UVA light detector.Ultraviolet frequencies have a non-linear effect and are amplified to energize and regulate biological systems.Ultraviolet and high-frequency blue wavelengths are always balanced by red and infrared light in nature.The acute timing of UVA and IRA exposure throughout a diurnal cycle are what turn the gears of the eye clock and modulate biological processes.
美国的医生仍然被教导说前房、晶状体和角膜阻挡紫外线。事实上,有益的胶原蛋白和视网膜色素上皮是紫外线荧光蛋白,它们被设计用来接收这些频率。大约1%的紫外线通过眼睛和3%的紫外线。此外,角膜和皮肤中的神经肽是一种特殊的 UVA 光探测器。紫外线频率具有非线性效应,并被放大以激发和调节生物系统。自然界中,紫外线和高频蓝光的波长总是与红外线和红外线相平衡。长波紫外线和红外线暴露的急性时间整个日周期是什么打开眼睛的时钟齿轮和调节生物过程。
Conclusion:
结语:
The solar spectrum on earth falls between 250 nanometers and 3,000-nanometer wavelength light.The human eye can only see from 380 nanometers to 780 nanometers.We are blind to these frequencies above and below the visible spectrum because they run the clock function of our eyes through the mechanisms of photopigments called opsins,aromatic amino acids,and water running through our neurological system.Protecting our eye clock is of the utmost importance.Modern lighting not only emphasizes unbalanced blue wavelengths that damage the photopigments but completely subtracts out ultraviolet and infrared,further unraveling the circadian mechanisms in our eyes.An effective protocol to protect the eye clock includes maximizing our exposure to sunlight,avoiding artificial light when possible,and blocking artificial light with blue blocking material when necessary.
地球上的太阳光谱在250纳米到3000纳米波长之间。人类的眼睛只能看到380纳米到780纳米的范围。我们对这些可见光上下的频率视而不见,因为它们通过一种叫做视蛋白、芳香族氨基酸和流经我们神经系统的水的感光色素机制来控制我们眼睛的时钟功能。保护我们的眼钟是至关重要的。现代照明不仅强调破坏感光色素的不平衡的蓝色波长,而且完全消除紫外线和红外线,进一步揭示我们眼睛的昼夜节律机制。保护眼钟的有效方案包括最大限度地让我们暴露在阳光下,尽可能避免人造光线,必要时用蓝色阻挡材料阻挡人造光线。
By Lucien Burke
作者:Lucien Burke
来源:https://raoptics.com/blogs/news/the-eye-clock-not-just-a-camera?fbclid=IwAR23C5I9Xfjobkm31SPr-G3XawrZ41fDmbR1zu-OM5LePVO599WxNx-68LU